

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 1 / 33

_

Table of Contents

15EC743 : Real Time Systems	2
A. COURSE INFORMATION	
1. Course Overview	
2. Course Content	2
3. Course Material	2
4. Course Prerequisites	2
B. OBE PARAMETERS	3
1. Course Outcomes	<u> 3</u>
2. Course Applications	<u>3</u>
3. Articulation Matrix	<u> 3</u>
4. Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	<u>5</u>
C. COURSE ASSESSMENT	<u>5</u>
1. Course Coverage	<u> 5</u>
2. Continuous Internal Assessment (CIA)	<u>5</u>
D1. TEACHING PLAN – 1	6
Module – 1	6
Module - 2	<u></u> 7
E1. CIA EXAM – 1	7
a. Model Question Paper - 1	7
b. Assignment –1	8
D2. TEACHING PLAN – 2	10
Module - 3	10
Module – 4	11
E2. CIA EXAM – 2	12
a. Model Question Paper – 2	12
b. Assignment – 2	12
D3. TEACHING PLAN – 3	14
Module – 5	14
E3. CIA EXAM – 3	15
a. Model Question Paper - 3	
b. Assignment – 3	15
F. EXAM PREPARATION	
1. University Model Question Paper.	
2. SEE Important Ouestions	19

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 2 / 33

Note : Remove "Table of Content" before including in CP Book

Each Course Plan shall be printed and made into a book with cover page

Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher

levels

15EC743: Real Time Systems

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	EC
Year / Semester :	04/07	Academic Year:	2019-20
Course Title:	Real Time Systems	Course Code:	15EC743
Credit / L–T–P:	03/T	SEE Duration:	180 Minutes
Total Contact Hours:	40	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	1 / Module
Course Plan Author:	Anitha Grace	Sign	Dt:
Checked By:		Sign	Dt:

2. Course Content

Mod	Module Content	Teaching	Module	Blooms
ule		Hours	Concepts	Level
1	Introduction to Real-Time Systems: Historical		Fundamentals	
	background, Elements of a Computer Control System, RTS-	08	of RTS,	L2,L2
	Definition, Classification of Real-time Systems, Time		Computer	
	Constraints, Classification of Programs. Concepts of		Control	
	Computer Control: Introduction, Sequence Control, Loop		Statergies	
	Control, Supervisory Control, Centralized Computer Control,			
	Hierarchical Systems.			
2	Computer Hardware Requirements for Real-Time		Microprocesso	
	Applications: Introduction, General Purpose Computer,	08	rs in Real time	L2,L2
	Single Chip Microcomputers and Microcontrollers,		applications,	
	Specialized Processors, Process-Related Interfaces, Data		Interfacing	
	Transfer Techniques, Communications, Standard Interface		Techniques	
3	Languages for Real-Time Applications: Introduction,		Real time	

Dept EC

Prepared by Checked by

MSTITUTE OF
P
E (2 88) 8
SANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 3 / 33

COP79	The Section 1. CAAS. All rights reserved.			
	Syntax Layout and Readability, Declaration and Initialization	08	languages,	L3,L3
	of Variables and Constants, Modularity and Variables,		Techniques of	
	Compilation of Modular Programs, Data types, Control		modularity	
	Structures, Exception Handling, Low-level facilities, Co-			
	routines, Interrupts and Device Handling, Concurrency,			
	Real-Time Support, Overview of Real-Time Languages.			
4	Operating Systems: Introduction, Real-Time Multi-		Scheduling	
	Tasking OS, Scheduling Strategies, Priority Structures, Task	08	and task	L2,L2
	Management, Scheduler and Real-Time Clock Interrupt		management,	
	Handler, Memory Management, Code Sharing, Resource		Resource	
	Control, Task Co-Operation and Communication, Mutual		Management	
	Exclusion.			
5	Design of RTS - General Introduction: Introduction,			
	Specification Document, Preliminary Design, Single-Program	08	Design	L3,L3
	Approach, Foreground/Background System.RTS		Approach,	
	Development Methodologies : Introduction, Yourdon		Modelling and	
	Methodology, Ward and Mellor Method, Hately and Pirbhai		methodology	
	Method.			
		1	1	

3. Course Material

Mod	Details	Available
ule		
1	Text books	
	Real-Time Computer Control, by Stuart Bennet, 2nd Edn. Pearson	In Lib
	Education. 2008	
2	Reference books	
1	C.M. Krishna, Kang G. Shin, "Real -Time Systems", McGraw -Hill	In dept
2	International Editions, 1997.	
3	Real-Time Systems Design and Analysis, Phillip. A. Laplante, second edition, PHI, 2005.	
	Embedded Systems, Raj Kamal, Tata McGraw Hill, India, third edition, 2005	

A INSTITUTE OF
1 2 5 W
BANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 4 / 33

3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	15Ec42	•	2.Knowledge of microprocessor and interface	4		L2
2	15Ec55	Operating	4. Knowledge of Operating	5		L2
	3	System	System			

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach.	Concept	Instr	Assessmen	Blooms'
		Hours		Method	t Method	Level
15EC743.	Understand the basics and	03	Fundament	Lecture	Assignmen	L2
1	importance of RTS Using a		als of RTS		t	Understand
	generalized Computer Control					
	System					
15EC743.	Describe the process control	05	Computer	Lecture	Assignmen	L2
2	applications and types of control		Control		t	Understand
	strategies		Strategies			
15EC743.	Summarize the major features of	04	Microproce	Lecture/	Assignmen	L2
3	the microprocessors using		ssors in	Tutorial	t and Slip	Understand
	Schematic diagram		real time		Test	
			applications			
15EC743.	Describe the standard interfacing	04	Interfacing	Lecture /	Assignmen	L2
4	techniques and communication		techniques	PPT	t	Understand
	methodology					

& MSTITUTE	DE TO
100 AV	> Call
E E S ^{SQ}) [
BANGALOF	E

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 5 / 33

	Total	40	У			
			1	I	I	
			methodolog			
	describe major methodologies		and			
10	using software modelling and		modeling		t	Apply
15EC743.	Design and implement a system	04	Software	Lecture	Assignmen	L3
	single program approach					
9	a computer based system using		approach	utorial	t	Apply
15EC743.	Outline the planning and design of	04	Design	Lecture/t	Assignmen	L3
	exclusion					
_	techniques for providing mutual		nt			
	resource sharing and explain the	•	manageme		t	Understand
15EC743.	A generalise the problem of	04	Resource	Lecture	Assignmen	L2
	a.a.g. a		nt		1030	
	diagram		manageme		Test	onaci stana
	management using task state	04	and task	Lecture	t and Slip	Understand
15FC743	Describe the scheduling and task	04	Scheduling		Assignmen	L2
0	inodularity		modularity		t	Apply
15EC743.	Explain the techniques of modularity	04	Techniques of	and	Assignmen	
	language Explain the techniques of	04	Tashaisuss	Lockuro	A s s i s un un o un	L3
	requirements for a real time		language			Apply
	Explain and prioritize the major	04	Real time	Lecture	Slip test	L3

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	<u></u>	Level
2110	Application Area	СО	Level
1	Used in Metal industry applications in real time monitoring control	CO1	L2
2	The water system is monitored and controlled by dual redundant computers	CO2	L2
	which also serve as hosts to a large number of distributed satellite computers		
3	Environmental variables such as temperature and air flows are monitored and	CO3	L2
	controlled to optimize comfort and operating costs in large buildings		
4	Used by electric utilities as an energy management system (EMS)	CO4	L2
5	RTS also provide structural and aerodynamic testing and simulation during the	CO5	L3
	development of aeroplane and space shuttles		
6	RTS collect and analyze data from space exploration missions, used as real-	CO6	L3
	time trainers and simulators		
7	Domestic and international data communication networks use RTSs as	CO7	L2
	communication processors to provide key features of packet switched		
	networks such as high speed real-time communication		
8	The production of high commodity chemicals such as ethylene and prophylene	CO8	L2
	is supervised and controlled by computers.		

Dept EC

Prepared by Checked by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 6 / 33

9	Set up of digital thermometer	CO9	L3
10	Data acquisition system design	CO10	L3

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

_	Course Outcomes				P	rogr	am (Outc	ome	S				
#	COs	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PO	РО	Level
		1	2	3	4	5	6	7	8	9	10	11	12	
15EC743.1	Understand the basics and	3	2	1	2	_	_	_	_	_	-	-	-	L2
	importance of RTS Using a													
	generalized Computer Control													
	System													
15EC743.2	Describe the process control		1	2	3	3	_	_	_	_		-	_	L2
	applications and types of													
1556742.2	control strategies		_	_	,									1.2
15EC/43.3	Summarize the major features of the microprocessors using	3	2	2	1	_	_	_	_	_	_	_	-	L2
	Schematic diagram													
15EC743.4		3	_	1	2	_	2		_	_	_	 	_	L2
13207 13.1	interfacing techniques and	,			_		_							
	communication methodology													
15EC743.5		3	3	2	_	2	_	_	_	_	-	-	-	L3
	major requirements for a real													
	time language													
15EC743.6	Explain the techniques of	3	_	3	3	_	_	_	_	_	-	-	-	L3
	modularity													
15EC743.7	Describe the scheduling and		3	1	_	_	_	_	_	_	-	-	-	L2
	task management using task													
	state diagram													
15EC743.8	A generalise the problem of		_	3	_	2	_	-	_	_	-	-	-	L2
	resource sharing and explain the techniques for providing													
	mutual exclusion													
15EC743.9		3	3	_	_	_	_			_	<u> </u>	 	_	L3
1366743.9	design of a computer based		,											
	system using single program													
	approach													
15EC743.1		3	2	_	3	-	_	_	_	_	-	-	-	L3
0	system using software													
	modelling and describe major													
	methodologies													

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 7 / 33

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mapping		Mapping Justification N				
CO	РО		Level			
CO1	PO1	Knowledge of computer control system is used to predict the performance of the computer devices	L2			
CO1	PO2	Analysing problems in computer controlled systems and also for performance analysis of devices				
CO1	PO3	Design of the supervisory computer control systems	L2			
CO1	PO4	Interpretation of the real time systems and elements of computer control system				
CO2	PO1	Knowledge of loop control system for the analysis of computer systems	L2			
CO2	PO2	Centralized computer control processes for analysing the problems of centralized systems	L2			
CO2	PO3	Designing of the Centralized computer control systems hence use full for society and environment considerations.	L2			
CO2	PO4	Interpretation of complex problems in the deigning of control system of devices	L2			
CO3	PO1	Knowledge of general purpose computer to predict behaviour of the systems	L2			
CO3	PO2	Analysing the problems of microcomputer & microcontrollers systems	L2			
CO3	PO3	Designing the components & elements of microcomputer and microcontroller	L2			
CO3	PO4	Determination of the specialized processors working and solving the problems of complex problems	L2			
CO4	PO1	Knowledge on data transfer techniques to build communication between devices	L2			
CO4	PO3	Design of standard interfacing devices for testing of computer data transfer conditions	L2			
CO4	PO6	Knowledge of data security while data transfer should be taken care	L2			
CO5	PO1	Knowledge on the syntax and readability of programming	L3			
CO5	PO2	Analysis of the programming structure and declaration on the components	L3			
CO5	PO5	Different programming tools are available for the computing the data	L3			
CO6	PO1	Basic knowledge on the modularity of the system	L3			

A IN	STITUTE OF A
	OCAL
E (\$ (\$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$ (\$) \$ (\$) \$ (\$ (\$) \$ (\$ (\$) \$ (\$ (\$) \$ (\$ (\$) \$ (\$ (\$) \$))).
8	WGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 8 / 33

Copyright ©2017. CA	AAS. All rights rese	rved.	
CO6	PO3	Designing the control structure for the modularity of the system	L3
CO6	PO4	Predicting the interrupts and handling the device modularity	L3
C07	PO1	Knowledge on the scheduling and task management strategies	L2
CO7	PO2	Analysis of task management and memory allocation for the	L2
		computed task	
CO7	PO3	Development of the task and scheducling systems to manage	L2
		the resources	
CO8	PO1	Knowledge on the memory and resource management	L2
CO8	PO3	Designing the complete memory allocation system for the data	L2
		storage	
CO8	PO5	Modern tools for the resource allocating and code sharing are	L2
		used	
CO9	PO1	Basic knowledge on the desiging of the foreground/Background	L3
		systems	
CO9	PO2	Analysing the preliminary design approaches for the RTS	L3
CO10	PO1	Different methodologies for the designing of the Rts devices and	L3
		components	
CO10	PO2	Analysis of the modelling system	L3
CO10	PO4	Investigation on the different methodology and modelling	L3
CO10	PO5	Design of the hately and pirbhai method RTS systems	L3

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					

OO VED TO	SKIT	Teaching Process	Rev No.: 1.0
1 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
* AWGALORE *	Title:	Course Plan	Page: 9 / 33

BANGE	ALORE	Title:	Cou	rse Plan	Page: 9	/ 33
Copyright	t ©2017.	cAAS. All rights reser	ved.			
5						
6						
7						
8						
9						
10						

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching		No. of	quest	ion in	Exam		СО	Levels
ule		Hours	CIA-	CIA-	CIA-	Asg	Extra	SEE		
#			1	2	3		Asg			
1	Introduction to real time systems	8	2	_	-	1	1	2	CO1,	L2,L2
									CO2	
2	Computer hardware requirements	8	2	_	_	1	1	2	CO3,	L2,L2
	for real time applications								CO4	
3	Languages for real time	8	_	2	_	1	1	2	CO5,	L3,L3
	applications								CO6	
4	Operating Systems	8	_	2	_	1	1	2	CO7,	L2,L2
									C08	
5	Design of RTS	8	-	_	4	1	1	2	CO9,	L3,L3
									CO10	
-	Total	40	4	4	4	5	5	10	-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam - 1	15	CO1, CO2, CO3, CO4	L2,L2,L2,L2,
CIA Exam - 2	15	CO5, CO6, CO7, C08	L3,L3,L2,L2
CIA Exam - 3	15	CO9, CO10	L3,L3
Assignment – 1	05	CO1, CO2, CO3, CO4	L2,L2,L2,L2,
Assignment – 2	05	CO5, CO6, CO7, CO8	L3,L3,L2,L2
Assignment – 3	05	CO9, CO10	L3,L3

Dept EC Prepared by Approve-

STITUTE OF THE O	SKIT	Teachi	Rev No.: 1.0	
	Doc Code:	SKIT.Ph5b1.F02		Date: 16-08-2019
* BANGALORE *	Title:	Course Plan		Page: 10 / 33
Copyright ©2017. cAAS. All rights reserved.				
Seminar - 1	I	_	CO1, CO2, CO3, CO4	L2,L2,L2,L2,
Seminar - 2	2	- CO5, CO6,CO7,CO8		L3,L3,L2,L2
Seminar - 3	3	- CO9, CO10		L3,L3
Other Activities – define			CO1 to Co9	L2, L3, L4
- Slip test				
Final C	IA Marks	20	-	-

Note: Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to Real Time System	Appr	8Hrs
		Time:	
а	Course Outcomes	-	Blooms
-	The student should be able to:	_	Level
1	Understand the basics and importance of RTS Using a generalized Computer Control System	CO1	L2
2	Describe the process control applications and types of control strategies	CO2	L2
b	Course Schedule	_	_
Class No	Module Content Covered	CO	Level
1	Definition of real time system, Historical background of real time system with real time examples	C01	L2
2	Elements of a Computer Control System, Classification of Real-time Systems with examples of computer controlled real time applications	CO1	L2
3	Time Constraints-outlining the concept of real time with examples ,Classification of Programs.	CO1	L2
4	Introduction to computer control systems, sequence control	CO2	L2
5	Loop Control	CO2	L2
6	Supervisory Control	CO2	L2
7	Centralized Computer Control	CO2	L2
8	Hierarchical Systems	CO2	L2
С	Application Areas	CO	Level
1	Water tank control system	CO1	L2
2	Temperature and pressure monitoring and control system	CO2	L2
d	Review Questions	_	_
1	Define Real time system, classify them based on time constrains	CO1	L1

Dept EC

Prepared by Checked by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 11 / 33

opyright ©2	D17. cAAS. All rights reserved.		
2	Explain the different types of programs in system design	CO1	L2
3	Explain the computer control system showing communication tasks	CO1	L2
	with the block diagram		
4	Explain different classifications of RTS with examples.	CO1	L2
5	Define the term "time constraints". How are RTS classified based on	CO1	L2
	time constraint? Explain them with appropriate equation		
6	Differentiate (i)Real time and non real time with examples.	CO1	L2
	(ii) Hard and soft real time with examples		
7	Describe the elements of computer control system with examples.	CO1	L2
8	Classify RTS based on Time constraints.	CO1	L2
9	Explain the following: i) Clock based tasks (ii) Event based tasks iii)	CO1	L2
	Interative systems		
10	Explain the following programs: i)Sequential ii) Multitasking iii) Real	CO1	L2
	time.		
11	Explain different classifications of RTS with examples.	CO1	L2
12	Explain Direct digital control (DDC) with a neat diagram.	CO2	L2
13	What is DDC? List the advantages of DDC over analog control.	CO2	L2
14	Discuss PID control algorithm with suitable formula.	CO2	L2
15	What do you mean by adaptive control? With a neat block diagram	CO2	L2
	explain the types of adaptive control.		
16	Explain Supervisory control, with an example.	CO2	L2
17	Explain the dual computer scheme.	CO2	L2
18	Write a note on Hierarchical systems.	CO2	L2
19	List out the responsibilities of a control engineer in designing the	CO2	L1
	suitable computer system		
20	Explain distributed system, with a neat diagram and a mention the	CO2	
	feature of HCI.		L2
21	Explain the following: (i) Supervisory control system (ii) Batch process	CO2	L2
	and continuous proc		
e	Experiences	-	_
1			
2			
3			
4			
5			

Module – 2

а	Course Outcomes	_	Blooms
		Time:	
Title:	Computer Hardware requirement for Real Time applications	Appr	8 rs

Dept EC Prepared by Approve-

Checked by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 12 / 33

	The student should be able to:	_	Leve
1	Summarize the major features of the microprocessors with the schemetic	CO3	L2
2	Describe standard interfacing techniques and communication methodology	CO4	L2
b	Course Schedule	_	_
Class No	Module Content Covered	CO	Leve
9	Introduction to the microprocessors in the real time applications	CO3	L2
10	General Purpose Computer	CO3	L2
11	Single Chip Microcomputers and Micro controllers	CO3	L2
12	Specialized Processors	CO3	L2
13	Process-Related Interfaces	CO4	L2
14	Process-Related Interfaces	CO4	L2
15	Data Transfer Techniques,	CO4	L2
16	Communications, Standard Interface.	CO4	L2
С	Application Areas	CO	Leve
1	security devices like anti-lock breaking system	CO3	L2
2	Used in Systems that are widely used in automobiles	CO4	L2
d	Review Questions		_
22	Explain schematic diagram of a general purpose digital computer. Write a flow chart of basic interrupt mechanism	CO3	L2
23	Mention the features of specialized processors and explain MIMD, with a neat diagram.	CO3	L2
24	List the various requirements in programming languages used for real time applications	CO3	L1
25	Write the block diagram of a single chip micro computer and explain the following blocks (i)Interrupt controller (ii) Series communication (iii) EPROM	CO4	L2
26	Explain various Computer system Architectures.	CO4	L2
27	Explain Analog signal interference, with a neat diagram.	CO3	L2
28	Write the block diagram of an interrupt vectoring using priority encoding circuit and explain. Show the timing diagram of simplified READ operation.	CO3	L2
29	Explain the following: (i) HDLC protocol (ii) Asynchronous and synchronous transmission techniques	CO4	L2
30	Explain pulse interface for input and output operation, with a neat block diagram.	CO4	L2
31	Explain digital signal interference, with a neat diagram.	CO4	L2
	, ,		

AINST	TUTE OF TA
	\$4.50 P
E (-	5 ()
BAI	GALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 13 / 33

Write a note on Real time Clock	CO4	L2
Explain Daisy-chain interrupt structure.	CO4	L2
Describe multi-level interrupts.	CO4	L2
Explain Interrupt masking with a neat diagram.	CO4	L2
Write a note on Direct memory Access.	CO4	L2
Explain various LAN topologies.	CO4	L2
Explain the ISO seven layer model for data communication.	CO4	L2
Experiences	-	-
	CO1	L2
	CO3	L3
	Explain Daisy-chain interrupt structure. Describe multi-level interrupts. Explain Interrupt masking with a neat diagram. Write a note on Direct memory Access. Explain various LAN topologies. Explain the ISO seven layer model for data communication.	Explain Daisy-chain interrupt structure. Describe multi-level interrupts. Explain Interrupt masking with a neat diagram. CO4 Write a note on Direct memory Access. Explain various LAN topologies. Explain the ISO seven layer model for data communication. CO4 Experiences - CO1

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs 15EC743 Sem: 7 Marks:						30	Time:	75 minu	tes			
Code:												
Cou	rse:	Real Time	Real Time Systems									
-	-	Note: Ans	Note: Answer any 2 full questions one from each module									
1	a	Explain the with the bl	•		l system sho	wing cor	nmunication tas	sks 4	CO1	L2		
	b		Differentiate (i)Real time and non real time with examples (ii) Hard 8 and soft real time with examples							L2		
	С	Define the time.	followin	g program	ıs: i)Sequenti	al ii) Mu	ltitasking iii) R	eal 3	CO1	L2		
					(OR)							
2	a	Explain dis		system, v	vith a neat d	iagram a	and a mention t	the 5	CO2	L2		
	b	What do y ,explain th				With a n	eat block diagr	am 5	CO2	L2		
	С	Explain Su	pervisory	control, w	ith an examp	ole.		5	CO2	L2		

A INSTITUTE OF
9
E (5 8)
SANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 14 / 33

3	a	Explain schematic diagram of a general purpose digital computer. Write a flow chart of basic interrupt mechanism	5	CO3	L2
	b	Write the block diagram of an interrupt vectoring using priority encoding circuit and explain. Show the timing diagram of simplified READ operation.		CO3	L2
	С	Mention the features of specialized processors and explain MIMD, with a neat diagram.	5	CO3	L2
		(OR)			
4	a	Explain various Computer system Architectures.	5	CO4	L2
	b	Explain the following : (i) HDLC protocol (ii) Asynchronous and synchronous transmission techniques	4	CO4	L2
	С	Explain digital signal interference, with a neat diagram.	6	CO4	L2

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assignment Questions							
Crs Code:	Crs Code: 15EC743 Sem: 7 Marks: 5 Time: 90 - 120 minutes						
Course: Real Time Systems							

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Mark	CO	Level
			S		
1	1KT15EC001	Explain the following programs: i)Sequential ii)	5	CO1	L2
	IKITSECOOT	Multitasking iii) Real time.			
2	1KT15EC003	Explain different classifications of RTS with examples.	5	CO1	L2
3	1KT15EC004	Explain Direct digital control (DDC) with a neat diagram.	5	CO2	L2
4	1KT15EC005	What is DDC? List the advantages of DDC over analog	5	CO2	L2
	IKITSECOOS	control.			
5	1KT15EC006	Discuss PID control algorithm with suitable formula.	5	CO2	L2
6	1KT15EC007	Discuss PID control algorithm with suitable formula.	5	CO2	L2
7	1KT15EC008	What do you mean by adaptive control? With a neat block	5	CO2	L2
	IKITI	diagram ,explain the types of adaptive control.			
8	1KT15EC009	Explain Supervisory control, with an example.	5	CO2	L2
9	1KT15EC010	Explain the dual computer scheme.	5	CO2	L2
10	1KT15EC011	Write a note on Hierarchical systems.	5	CO2	L2
11	1KT15EC012	List out the responsibilities of a control engineer in	5	CO2	L1
	IKITJECOTZ	designing the suitable computer system			
12	1KT15EC013	Define Real time system, classify them based on time	5	CO1	L1
	TRITICOTS	constrains			
13	1KT15EC014	Explain the different types of programs in system design	5	CO1	L2
14	1KT15EC015	Explain the computer control system showing	5	CO1	L2
	TRITICOTS	communication tasks with the block diagram			

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 15 / 33

Convriat	nt ©2017. cAAS. All rig	hts reserved		•	
15		Explain different classifications of RTS with examples.	5	CO1	L2
16		Define the term "time constraints". How are RTS classified	5	CO1	L2
	1KT15EC019	based on time constraint? Explain them with appropriate equation			
17	1KT15EC020	Differentiate (i)Real time and non real time with examples. (ii) Hard and soft real time with examples	5	CO1	L2
18	1KT15EC021	Describe the elements of computer control system with examples.	5	CO1	L2
19	1KT15EC022	Classify RTS based on Time constraints.	5	CO1	L2
20	1KT15EC023	Explain the following: i) Clock based tasks (ii) Event based tasks iii) Interative systems	5	CO1	L2
21	1KT15FC024	Explain the following programs: i)Sequential ii) Multitasking iii) Real time.	5	CO1	L2
22	1KT15EC025	Explain different classifications of RTS with examples.	5	CO1	L2
23	1KT15EC026	Explain Direct digital control (DDC) with a neat diagram.	5	CO2	L2
24	1KT15EC028	What is DDC? List the advantages of DDC over analog control.	5	CO2	L2
25	1KT15EC029	Discuss PID control algorithm with suitable formula.	5	CO2	L2
26	1KT15EC030	What do you mean by adaptive control? With a neat block diagram ,explain the types of adaptive control.	5	CO2	L2
27	1KT15EC031	Define Real time system, classify them based on time constrains	5	CO1	L1
28	1KT15EC032	Explain the different types of programs in system design	5	CO1	L2
29	1KT16EC401	Explain the computer control system showing communication tasks with the block diagram	5	CO1	L2
30	1KT16EC403	Explain different classifications of RTS with examples.	5	CO1	L2
31	1KT16EC406	Define the term "time constraints". How are RTS classified based on time constraint? Explain them with appropriate equation	5	CO1	L2
32	1KT16EC408	Differentiate (i)Real time and non real time with examples. (ii) Hard and soft real time with examples	5	CO1	L2
33	1KT16EC411	Describe the elements of computer control system with examples.	5	CO1	L2
34	1KT15EC036	Classify RTS based on Time constraints.	5	CO1	L2
35	1KT15EC037	Explain the following: i) Clock based tasks (ii) Event based tasks iii) Interative systems	5	CO1	L2
36	1KT15EC038	Explain the following programs: i)Sequential ii) Multitasking iii) Real time.	5	CO1	L2
37	1KT15EC039	Explain different classifications of RTS with examples.	5	CO1	L2
38	1KT15EC041	Explain Direct digital control (DDC) with a neat diagram.	5	CO2	L2
	1				

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 16 / 33

Copyriał	nt ©2017. cAAS. All rig	hts reserved.			
39		What is DDC? List the advantages of DDC over analog	5	CO2	L2
		control.			
40		Discuss PID control algorithm with suitable formula.	5	CO2	L2
41	1KT15EC045	What do you mean by adaptive control? With a neat block diagram, explain the types of adaptive control.	5	CO2	L2
42	1KT15EC046	Define Real time system, classify them based on time constrains	5	CO1	L1
43		Write the block diagram of a single chip micro computer	5	CO4	L3
		and explain the following blocks (i)Interrupt controller (ii) Series communication (iii) EPROM			
44	1KT15EC048	Explain various Computer system Architectures.	5	CO4	L2
45		Explain Analog signal interference, with a neat diagram.	5	CO3	L3
46		Write the block diagram of an interrupt vectoring using	5	CO3	L2
		priority encoding circuit and explain. Show the timing diagram of simplified READ operation.	-		
47	1KT15FC052	Explain the following : (i) HDLC protocol (ii) Asynchronous and synchronous transmission techniques	5	CO4	L2
48	1KT15EC053	Explain Analog signal interference, with a neat diagram.	5	CO3	L3
49		Write the block diagram of an interrupt vectoring using	5	CO3	L2
	1KT15EC054	priority encoding circuit and explain. Show the timing			
		diagram of simplified READ operation.			
50	1KT15EC055	Explain the following : (i) HDLC protocol (ii) Asynchronous and synchronous transmission techniques	5	CO4	L2
51	1KT15EC056	Explain pulse interface for input and output operation, with a neat block diagram.	5	CO4	L2
52		Explain digital signal interference, with a neat diagram.	5	CO4	L2
53		Write a note on Real time Clock	5	CO4	 L2
54		Explain Daisy-chain interrupt structure.	5	CO4	 L2
55		Explain Analog signal interference, with a neat diagram.	5	CO3	L3
56		Write the block diagram of an interrupt vectoring using		CO3	L2
		priority encoding circuit and explain. Show the timing	,	203	
	11111322003	diagram of simplified READ operation.			
57	1KT15EC064	Describe multi-level interrupts.	5	CO4	L2
58		Explain Interrupt masking with a neat diagram.	5	CO4	 L2
59		Write a note on Direct memory Access.	5	CO4	 L2
60		Explain various LAN topologies.	5	CO4	 L3
61		Explain the ISO seven layer model for data communication.	5	CO4	L3
62		Describe multi-level interrupts.	5	CO4	L2
63		Explain Interrupt masking with a neat diagram.	5	CO4	L2
64		What do you mean by adaptive control? With a neat block		CO2	L2
	1KT16EC422	diagram ,explain the types of adaptive control.			

METITUTE OF
P
E 2 3 5
BANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 17 / 33

65	1KT16EC423	Define Real time system,classify them based on time	5	CO1	L1
		constrains			
66		Write the block diagram of a single chip micro computer	5	CO4	L3
	1KT16EC424	and explain the following blocks (i)Interrupt controller (ii)			
		Series communication (iii) EPROM			
67	1KT16EC426	Explain various Computer system Architectures.	5	CO4	L2
68	1KT14EC067	Explain Analog signal interference, with a neat diagram.	5	CO3	L3

D2. TEACHING PLAN - 2

Module - 3

Title:	Languages of real time application	Appr	16 Hrs
		Time:	
а	Course Outcomes	_	Blooms
_	The student should be able to:	_	Level
1	Explain and prioritize the major requirements for a real time language	CO5	L3
2	Explain the techniques of modularity	CO6	L3
b	Course Schedule		
Class No	Module Content Covered	co	Level
17	Introduction	CO5	L2
18	Syntax Layout and Readability, Declaration and Initialization of Variables and Constants	CO5	L3
19	Syntax Layout and Readability, Declaration and Initialization of Variables and Constants	CO5	L3
20	Modularity and Variables, Compilation of Modular Programs,	CO5	L3
21	Data types, Control Structures,	CO6	L3
22	Exception Handling, Low-level facilities, Co-routines,	CO6	L3
23	Interrupts and Device Handling, Concurrency,	CO6	L3
24	Real-Time Support, Overview of Real-Time Languages.	CO6	L3
С	Application Areas	СО	Level
1	Use in avionics application	CO5	L3
2	Used in monitoring system	CO6	L3
d	Review Questions	_	
39	How do strong data typing contribute to the security of programming language	CO5	L3
40	What are the requirements, which CUTLASS has to meet? With a neat	CO5	L3

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 18 / 33

yright ©20	D17. cAAS. All rights reserved.		
	diagram, show CUTLASS host -target configuration.		
41	How do strong data typing contribute to the security of programming language?	CO5	L2
42	Explain the approaches of application oriented software.	CO5	L3
43	Explain the use of co-routines showing an examples.	CO5	L3
44	A stream of data in character form is received from a remote station over a serial link. The data has to be processed character by character by a routine process item until the EOT character is received. The EOT must not be processed. Write a simple loop structure using EXIT statement.	CO5	L3
45	Explain simple table-driven approach used for application oriented software.	CO6	L3
46	Discuss the features that a real time language should posses in order to meet the real time applications	CO6	L2
47	Explain how the completion of program is carried out in the real time system	CO6	L3
48	With a neat diagram of table driven application system and explain the working	CO6	L2
е	Experiences	_	_
1		CO1	L2
2			
3			
4		CO3	L3
5			

Module – 4

Title:	Operating System	Appr	16 Hrs
		Time:	
а	Course Outcomes	-	Blooms
_	The student should be able to:	-	Level
1	Describe the Scheduling and task management using the task state diagram	C07	L2
2	Generalize the problems of resource sharing and explain the techniques for providing the mutual exclusion	CO8	L3
b	Course Schedule		
Class No	Module Content Covered	CO	Level
25	Introduction	CO7	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 19 / 33

		.gc. 15 /	
opyright ©2 26	Real-Time Multi-Tasking OS	CO7	L2
27	Scheduling Strategies, Priority Structures	CO7	L2
28	Task Management	CO7	L2
29	Scheduler and Real-Time Clock Interrupt Handler	CO7	L3
30	Memory Management	CO8	L2
31	Code Sharing, Resource Control	CO8	L2
32	Task Co-Operation and Communication	CO8	L2
33	Mutual Exclusion	CO8	L3
С	Application Areas	CO	Level
1	Used in digital televisions and ATMS	CO7	L3
2	Used in GPS monitoring system	CO8	L3
d	Review Questions	_	_
49	Explain general purpose operating system with a neat diagram	CO7	L2
50	Explain with a suitable diagram the multi user and multi tasking	CO7	L3
	operating systems.		
51	Explain the two basic Scheduling strategies.	CO7	L2
52	Explain the priority levels in an RTOS.	CO7	L3
53	Explain Clock level tasks with examples.	CO7	L3
54	What are the functions of a task management module? Explain various tasks states, with the help of a task state diagram.	CO7	L3
55	What is a Task descriptor. List RTOS task state transition commands.	CO7	L2
56	Explain RTOS search for work by the dispatcher with a neat flow diagram.	CO7	L3
57	Explain software modules for foreground/background system showing data storage	CO7	L3
58	Write a note on (i) Non-partition memory (ii) Partitioned memory	CO8	L2
59	Explain with a neat diagram, the general structure of IOSS.	CO8	L3
60	List IOSS system commands for RTOS.	CO8	L1
61	What is the principal difference between pool and channel?	CO8	L2
62	Define liveness. List the set of functions and primitives for RTOS.	CO8	L1
63	Explain the typical structure of a RTOS.	CO8	L3
64	Write notes on (i) Semaphore (ii) Swapping	CO8	L3
65	Explain: (i) Task chaining and swapping (ii) Task overlaying	CO7	L2
66	Explain the Scheduling policies.	CO7	L2
67	What is code sharing? Explain the serially reusable and reentrant code.	CO7	L2
68	Explain the mutual exclusion using binary semaphore.	CO8	L2
		I	1

IN	STITUTE OF
3	0 00000000000000000000000000000000000
AR (5 (8)
* 8	WGALORE *

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 20 / 33

70	List the minimum set of operation that RTOS kernel need to support, with examples.	CO8	L1
71	Explain data transfer without synchronization.	CO8	L2
72	Define the following (I)Live lock (ii) Deadlock (iii) Indefinite postponement	CO8	L2
73	List and explain three levels of priority structures.	CO8	L2
е	Experiences	_	-
1		CO7	L2
2			
3			
4		CO8	L3
5			

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs		15EC743	Sem:	7	Marks:	30	Time:	75 ı	minutes		
Code	e:										
Cour	se:	Real Time	Systems								
-	-	Note: Ans	swer any	2 full qu	iestions,On	e from e	ach module	ı	Mark s	СО	Level
1	a				hich CUTLAS -target confi		meet? With a n	eat	7	CO5	L3
	b	Explain th	xplain the use of co-routines showing an examples.					8	CO5	L3	
					(OR)						
2	a	Explain si software.	mple tabl	e-driven	approach use	ed for ap	oplication orien	ited	7	CO6	L3
	b	Explain ho system	w the cor	npletion o	f program is	carried o	out in the real ti	ime	8	CO6	L3
3	a	With a nea	t diagram	s explain	multi-tasking	g and mu	lti-user operati	ing	7	CO7	L3
	b	What are t			•	nt modu	le? Explain vario	ous	8	CO7	L2
					(OR)						
4	a	Explain da	ta transfe	r without	synchronizat	ion.				CO8	L2
	b	Explain (i)	task chai	ning & swa	aping (ii) task	overlayi	ng		8	CO7	L2

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

Dept EC

Prepared by Checked by

Approve-

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 21 / 33

	Model Assignment Questions							
Crs Code:	Crs Code: 15EC743 Sem: 7 Marks: 5 Time: 90 - 120 minutes						90 - 120 minutes	
Course: Real Time Systems								

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

Note:	Each student	: to answer 2–3 assignments. Each assignment carries equal	mark.		
SNo	USN	Assignment Description	Mark	СО	Leve
			S		
1	1KT15EC001	Explain the approaches of application oriented software.	5	CO5	L3
2	1KT15EC003	Explain the use of co-routines showing an examples.	5	CO5	L3
3		A stream of data in character form is received from a	5	CO5	L3
		remote station over a serial link. The data has to be			
	1KT15FC004	processed character by character by a routine process item			
	1KT15EC004	until the EOT character is received. The EOT must not be			
		processed. Write a simple loop structure using EXIT			
		statement.			
4	1KT15EC005	Explain simple table-driven approach used for application	5	CO6	L3
		oriented software.			
5	1KT15EC006	Discuss the features that a real time language should	5	CO6	L2
		posses in order to meet the real time applications			
6	1KT15EC007	Explain how the completion of program is carried out in	5	CO6	L3
		the real time system			
7	1KT15EC008	With a neat diagram of table driven application system and	5	CO6	L2
		explain the working			
8	1KT15EC009	Write a note on (i) Non-partition memory (ii) Partitioned	5	CO8	L2
		memory			
9		Explain with a neat diagram, the general structure of IOSS.	5	CO8	L3
10	1KT15EC011	List IOSS system commands for RTOS.	5	CO8	L1
11	1KT15EC012	What is the principal difference between pool and channel?	5	CO8	L2
12	1KT15EC013	Define liveness. List the set of functions and primitives for RTOS.	5	CO8	L1
13	1KT15EC014	Explain the typical structure of a RTOS.	5	CO8	L3
14	1KT15EC015	Write notes on (i) Semaphore (ii) Swapping	5	CO8	L3
15	1KT15EC017	Explain: (i) Task chaining and swapping (ii) Task overlaying	5	CO7	L2
16		Explain the Scheduling policies.	5	CO7	L2
17	1KT15EC020	What is code sharing? Explain the serially reusable and reentrant code.	5	CO7	L2
18	1KT15EC021	Explain the mutual exclusion using binary semaphore.	5	CO8	L2
19	1KT15EC022	Write a note on semaphore with three permissible operations.	5	CO8	L3
20	1KT15EC023	List the minimum set of operation that RTOS kernel need to support, with examples.	5	CO8	L1
21	1KT15EC024	Explain general purpose operating system with a neat diagram	5	CO7	L2

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 22 / 33

Copyrig	ht ©2017. cAAS. All rig	hts reserved.			
22	1KT15EC025	Explain with a suitable diagram the multi user and multi	5	CO7	L3
		tasking operating systems.			
23	1KT15EC026	Explain the two basic Scheduling strategies.	5	CO7	L2
24	1KT15EC028	Explain the priority levels in an RTOS.	5	CO7	L3
25	1KT15EC029	Explain Clock level tasks with examples.	5	CO7	L3
26		What are the functions of a task management module?	5	CO7	L3
	1KT15EC030	Explain various tasks states, with the help of a task state			
		diagram.			
27	1KT15EC031	What is a Task descriptor. List RTOS task state transition	5	CO7	L2
	TRITISECOST	commands.			
28	1KT15EC032	Explain RTOS search for work by the dispatcher with a neat	5	CO7	L3
	TKTT JECO32	flow diagram.			
29	1KT16EC401	Explain software modules for foreground/background	5	CO7	L3
	TKTTOLC401	system showing data storage			
30	1KT16EC403	Explain general purpose operating system with a neat	5	CO7	L2
	IKITOEC403	diagram			
31	1KT16EC406	Explain with a suitable diagram the multi user and multi	5	CO7	L3
	IKITOEC406	tasking operating systems.			
32	1KT16EC408	Explain the two basic Scheduling strategies.	5	CO7	L2
33	1KT16EC411	Explain the priority levels in an RTOS.	5	CO7	L3
34	1KT15EC036	Explain Clock level tasks with examples.	5	CO7	L3
35		What are the functions of a task management module?	5	C07	L3
	1KT15EC037	Explain various tasks states, with the help of a task state			
		diagram.			
36		What is a Task descriptor. List RTOS task state transition	5	C07	L2
	1KT15EC038	commands.			
37	11/71556000	Explain RTOS search for work by the dispatcher with a neat	5	C07	L3
	1KT15EC039	flow diagram.			
38	11/71556041	Explain software modules for foreground/background	5	CO7	L3
	1KT15EC041	system showing data storage			
39	11/71556040	Write a note on (i) Non-partition memory (ii) Partitioned	5	CO8	L2
	1KT15EC043	memory			
40	1KT15EC044	Explain with a neat diagram, the general structure of IOSS.	5	CO8	L3
41	1KT15EC045	List IOSS system commands for RTOS.	5	CO8	L1
42	1KT15EC046	What is the principal difference between pool and channel?	5	CO8	L2
43		Define liveness. List the set of functions and primitives for	5	CO8	L1
	1KT15EC047	RTOS.			
44	1KT15EC048	Explain the typical structure of a RTOS.	5	CO8	L3
45		Write notes on (i) Semaphore (ii) Swapping	5	CO8	L3
46		Explain RTOS search for work by the dispatcher with a neat		CO7	L3
	1KT15EC051	flow diagram.	,		
47	1KT15FC052	Explain software modules for foreground/background	5	CO7	L3
Dont					

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 23 / 33

Copyrig	ht ©2017. cAAS. All rig	hts reserved.			
		system showing data storage			
48	1KT15EC053	Write a note on (i) Non-partition memory (ii) Partitioned memory	5	CO8	L2
49	1KT15EC054	Write a note on semaphore with three permissible operations.	5	CO8	L3
50	1KT15EC055	List the minimum set of operation that RTOS kernel need to support, with examples.	5	CO8	L1
51	1KT15EC056	Explain general purpose operating system with a neat diagram	5	CO7	L2
52	1KT15EC058	Explain with a suitable diagram the multi user and multi tasking operating systems.	5	CO7	L3
53	1KT15EC059	Explain the two basic Scheduling strategies.	5	CO7	L2
54	1KT15EC061	Explain the priority levels in an RTOS.	5	CO7	L3
55	1KT15EC062	Explain Clock level tasks with examples.	5	CO7	L3
56	1KT15EC063	What are the functions of a task management module? Explain various tasks states, with the help of a task state diagram.	5	C07	L3
57	1KT15EC064	What is a Task descriptor. List RTOS task state transition commands.	5	CO7	L2
58	1KT15EC067	Explain RTOS search for work by the dispatcher with a neat flow diagram.	5	CO7	L3
59	1KT16EC412	Explain software modules for foreground/background system showing data storage	5	CO7	L3
60	1KT16EC416	Explain general purpose operating system with a neat diagram	5	CO7	L2
61	1KT16EC419	Explain with a suitable diagram the multi user and multi tasking operating systems.	5	CO7	L3
62	1KT16EC420	Explain the two basic Scheduling strategies.	5	CO7	L2
63	1KT16EC421	Explain the approaches of application oriented software.	5	CO5	L3
64	1KT16EC422	Explain the use of co-routines showing an examples.	5	CO5	L3
65	1KT16EC423	A stream of data in character form is received from a remote station over a serial link. The data has to be processed character by character by a routine process item until the EOT character is received. The EOT must not be processed. Write a simple loop structure using EXIT statement.	5	CO5	L3
66	1KT16EC424	Explain simple table-driven approach used for application oriented software.	5	CO6	L3
67	1KT16EC426	Discuss the features that a real time language should posses in order to meet the real time applications	5	CO6	L2
	+	Explain the approaches of application oriented software.	5	CO5	L3

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 24 / 33

D3. TEACHING PLAN - 3

Module – 5

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 25 / 33

			T
Title:	Design of RTS	Appr	16 Hrs
		Time:	
а	Course Outcomes	_	Blooms
_	The student should be able to:	_	Level
1	Outline the planning and design of a computer based system using	CO9	L3
	single program approach		
2	Design and implement a system using software modeling and	CO10	L3
	describe major methodologies		
b	Course Schedule		
Class No	Module Content Covered	СО	Level
34	Introduction to design approach	CO9	L2
35	Specification Document	CO9	L2
36	Preliminary Design	CO9	L2
37	Single-Program Approach	CO9	L3
38	Foreground/Background System.	CO9	L3
39	Introduction to design implementation	CO10	L2
40	Yourdon Methodology	CO10	L2
41	Ward and Mellor Method	CO10	L3
42	Hately and Pirbhai Method.	CO10	L3
С	Application Areas	СО	Level
1	Set up of digital thermometer	CO9	L2
2	Data acquisition system design	CO10	L2
	Review Questions		
d 74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 CO9	L2
	Explain the different phases involved in the design of a RTS.		
75	Explain foreground and background system with flow chart.	CO9	L2
76 77	How data will be shared with common memory? Write the flowchart for a single program approach.	CO9	L2 L3
78	Explain the concept of data sharing using common memory.	CO9	L2
78	Considering a system comprising of several hot air blowers. Prepare a	CO9	L3
75	specificator document of the same. (Assume planning phase has been	203	LS
	completed)		
80	Explain software design for RTS using software module.	CO9	L2
	Explain attempt at mutual exclusion using condition flags.	CO9	L2
81	Explain attempt at matual exclusion using condition hads.		
81 82		CO9	L2
81 82 83	Explain transfer of controller parameters by using semaphore. Mention the importance of conditions flag and binary semaphores.	CO9	L2 L3

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 26 / 33

oyright ©2	2017. cAAS. All rights reserved.	_	r
85	Explain Software modeling in the real time system development.	CO10	L2
86	Write a note on Yourdon methodology.	CO10	L2
87	Explain the general arrangement of drying oven.	CO10	L3
88	Explain building the essential model-the environmental model in Ward and mellor methodology.	CO10	L3
89	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology.	CO10	L2
90	Write explanatory notes on the following : (i) Hatley and pirbhai method (ii) Ward and Mellor method	CO10	L3
91	What do you mean by enhancing the model? Explain with a neat diagram, the relationship between real environment and virtual environment.	CO10	L3
92	Write short notes on (i)PSPEC and CSPEC (ii) software modeling (iii) YOURDON methodology	CO10	L2
93	Show the outline of abstract modeling approach of ward and mellor and explain.	CO10	L3
94	Explain various synchronous data flows.	CO10	L2
95	Write state transition diagram and state transition table for CSPEC.	CO10	L3
96	Explain the CFDO drying oven controller using Hatley and pirbhai notation	CO10	L3
е	Experiences	_	_
1		CO10	L2
2			
3			
4		CO9	L3
5			
		1	

E3. CIA EXAM - 3

a. Model Question Paper - 3

Crs		15EC743	Sem:	7	Marks:	30	Time:	75 minut	es		
Code:											
Course:		Real Time	Real Time Systems								
-	-	Note: Answer any 2 full questions,One from each module				Mark	co	Level			
								S			
1	a	Explain the	e differen	t phases	involved in the	e design d	of a RTS.	5	CO9	L2	
	b	Explain so	ftware de	sign for F	RTS using soft	ware mod	lule.	5	CO9	L2	
	С	Explain att	Explain attempt at mutual exclusion using condition flags.				5	CO9	L3		
2	a	Write the f	lowchart	for a sing	le program ap	proach		5	CO9	L2	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 27 / 33

	JI /. CAAS. All rights reserved.			
b	Explain transfer of controller parameters by using semaphore	5	CO9	L2
С	Explain foreground and background system with flow chart	5	CO9	L3
a	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology.	5	CO10	L2
b	Write explanatory notes on the following : (i) Hatley and pirbhai method (ii) Ward and Mellor method	5	CO10	L2
c	Write a note on Yourdon methodology	5	CO10	L2
a	Write state transition diagram and state transition table for CSPEC.	5	CO10	L2
b	Explain the CFDO drying oven controller using Hatley and pirbhai notation	5	CO10	L2
С	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology	5	CO10	L2
	b c a b c b	b Explain transfer of controller parameters by using semaphore c Explain foreground and background system with flow chart a Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology. b Write explanatory notes on the following: (i) Hatley and pirbhai method (ii) Ward and Mellor method c Write a note on Yourdon methodology a Write state transition diagram and state transition table for CSPEC. b Explain the CFDO drying oven controller using Hatley and pirbhai notation c Write Level-1 and Level-2 transformation diagrams in Ward and	b Explain transfer of controller parameters by using semaphore c Explain foreground and background system with flow chart 5 a Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology. b Write explanatory notes on the following: (i) Hatley and pirbhai method (ii) Ward and Mellor method c Write a note on Yourdon methodology 5 a Write state transition diagram and state transition table for CSPEC. b Explain the CFDO drying oven controller using Hatley and pirbhai notation c Write Level-1 and Level-2 transformation diagrams in Ward and	b Explain transfer of controller parameters by using semaphore c Explain foreground and background system with flow chart 5 CO9 a Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology. b Write explanatory notes on the following: (i) Hatley and pirbhai method (ii) Ward and Mellor method c Write a note on Yourdon methodology 5 CO10 a Write state transition diagram and state transition table for CSPEC. b Explain the CFDO drying oven controller using Hatley and pirbhai notation c Write Level-1 and Level-2 transformation diagrams in Ward and 5 CO10

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions								
Crs Code:	15EC743	Sem:	7	Marks:	5	Time:	90 – 120 minutes		
Course: Real Time systems									

Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.

SNo	USN	Assignment Description	Mark	CO	Level
			s		
1		Considering a system comprising of several hot air	5	CO9	L3
	1KT15EC001	blowers. Prepare a specificator document of the same.			
		(Assume planning phase has been completed)			
2	1KT15EC003	Explain software design for RTS using software module.	5	CO9	L2
3	1KT15EC004	Explain attempt at mutual exclusion using condition flags.	5	CO9	L2
4	1KT15EC005	Explain transfer of controller parameters by using	5	CO9	L2
	IKITSECOOS	semaphore.			
5	1KT15EC006	Mention the importance of conditions flag and binary	5	CO9	L3
	IKITSECOO	semaphores.		ı	
6	1KT15EC007	Explain the different phases involved in the design of a	5	CO9	L2
	IKITSEC007	RTS.			
7	1KT15EC008	Explain Software modeling in the real time system	5	CO10	L2
	IKITSECOOS	development.			
8	1KT15EC009	Write a note on Yourdon methodology.	5	CO10	L2
9	1KT15EC010	Explain the general arrangement of drying oven.	5	CO10	L3
10	11/11/0011	Explain building the essential model-the environmental	5	CO10	L3
	1KT15EC011	model in Ward and mellor methodology.		CO9 CO9 CO9 CO9 CO10 CO10	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 28 / 33

C	jht ©2017. cAAS. All rig	Les assessed		_ ,	
1 1	1KT15EC012	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology.	5	CO10	L2
12	1KT15EC013	Explain the different phases involved in the design of a RTS.	5	CO9	L2
13	1KT15EC014	Explain foreground and background system with flow chart.	5	CO9	L2
14	1KT15EC015	How data will be shared with common memory?	5	CO9	L2
15	1KT15EC017	Write the flowchart for a single program approach.	5	CO9	L3
16	1KT15EC019	Explain the concept of data sharing using common memory.	5	CO9	L2
17	1KT15EC020	Considering a system comprising of several hot air blowers. Prepare a specificator document of the same. (Assume planning phase has been completed)	5	CO9	L3
18	1KT15EC021	Explain software design for RTS using software module.	5	CO9	L2
19	1KT15EC022	Explain attempt at mutual exclusion using condition flags.	5	CO9	L2
20	1KT15EC023	Explain transfer of controller parameters by using semaphore.	5	CO9	L2
21	1KT15EC024	Mention the importance of conditions flag and binary semaphores.	5	CO9	L3
22	1KT15EC025	Explain the different phases involved in the design of a RTS.	5	CO9	L2
23	1KT15EC026	Explain Software modeling in the real time system development.	5	CO10	L2
24	1KT15EC028	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology.	5	CO10	L2
25	1KT15EC029	Write explanatory notes on the following : (i) Hatley and pirbhai method (ii) Ward and Mellor method	5	CO10	L3
26	1KT15EC030	What do you mean by enhancing the model? Explain with a neat diagram, the relationship between real environment and virtual environment.	5	CO10	L3
27	1KT15EC031	Write short notes on (i)PSPEC and CSPEC (ii) software modeling (iii) YOURDON methodology	5	CO10	L2
28	1KT15EC032	Show the outline of abstract modeling approach of ward and mellor and explain.	5	CO10	L3
29	1KT16EC401	Explain various synchronous data flows.	5	CO10	L2
30	1KT16EC403	Write state transition diagram and state transition table for CSPEC.	5	CO10	L3
31	1KT16EC406	Explain the CFDO drying oven controller using Hatley and pirbhai notation	5	CO10	L3
32	1KT16EC408	Explain the different phases involved in the design of a RTS.	5	CO9	L2
33	1KT16EC411	Explain Software modeling in the real time system	5	CO10	L2
	-		-		-

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 29 / 33

Copyri	ght ©2017. cAAS. All rig	hts reserved.			
		development.			
34	1KT15EC036	Write a note on Yourdon methodology.	5	CO10	L2
35	1KT15EC037	Explain the general arrangement of drying oven.	5	CO10	L3
36	1KT15EC038	Explain building the essential model-the environmental model in Ward and mellor methodology.	5	CO10	L3
37	1KT15EC039	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology.	5	CO10	L2
38	1KT15EC041	Explain the different phases involved in the design of a RTS.	5	CO9	L2
39	1KT15EC043	Explain foreground and background system with flow chart.	5	CO9	L2
40	1KT15EC044	How data will be shared with common memory?	5	CO9	L2
41	1KT15EC045	Write the flowchart for a single program approach.	5	CO9	L3
42	1KT15EC046	Explain the concept of data sharing using common memory.	5	CO9	L2
43	1KT15EC047	Considering a system comprising of several hot air blowers. Prepare a specificator document of the same. (Assume planning phase has been completed)	5	CO9	L3
44	1KT15EC048	Explain software design for RTS using software module.	5	CO9	L2
45	1KT15EC049	Explain attempt at mutual exclusion using condition flags.	5	CO9	L2
46	1KT15EC051	Write the flowchart for a single program approach.	5	CO9	L3
47	1KT15EC052	Explain the concept of data sharing using common memory.	5	CO9	L2
48	1KT15EC053	Considering a system comprising of several hot air blowers. Prepare a specificator document of the same. (Assume planning phase has been completed)	5	CO9	L3
49	1KT15EC054	Explain software design for RTS using software module.	5	CO9	L2
50	1KT15EC055	Explain attempt at mutual exclusion using condition flags.	5	CO9	L2
51	1KT15EC056	Explain transfer of controller parameters by using semaphore.	5	CO9	L2
52	1KT15EC058	Mention the importance of conditions flag and binary semaphores.	5	CO9	L3
53	1KT15EC059	Explain the different phases involved in the design of a RTS.	5	CO9	L1
54	1KT15EC061	Explain Software modeling in the real time system development.	5	CO10	L2
55	1KT15EC062	Write Level-1 and Level-2 transformation diagrams in Ward and mellor methodology.	5	CO10	L2
56	1KT15EC063	Write explanatory notes on the following : (i) Hatley and pirbhai method (ii) Ward and Mellor method	5	CO10	L3
57	1KT15EC064	What do you mean by enhancing the model? Explain with a neat diagram, the relationship between real environment	5	CO10	L3
Don				,	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 30 / 33

Copyrig	ht ©2017. cAAS. All rig	nts reserved.			
		and virtual environment.			
58	1KT15EC067	Write short notes on (i)PSPEC and CSPEC (ii) software	5	CO10	L2
	TRITISECCOT	modeling (iii) YOURDON methodology			
59	1KT16EC412	Show the outline of abstract modeling approach of ward	5	CO10	L3
		and mellor and explain.			
60	1KT16EC416	Explain various synchronous data flows.	5	CO10	L2
61	1KT16EC419	Write state transition diagram and state transition table for	5	CO10	L3
	TRITOLETIS	CSPEC.			
62	1KT16EC420	Explain the CFDO drying oven controller using Hatley and	5	CO10	L3
	TRITOLE 120	pirbhai notation			
63	1KT16EC421	Explain the different phases involved in the design of a	5	CO9	L2
		RTS.			
64	1KT16EC422	Explain Software modeling in the real time system	5	CO10	L2
		development.			
65		Considering a system comprising of several hot air	5	CO9	L3
	1KT16EC423	blowers. Prepare a specificator document of the same.			
		(Assume planning phase has been completed)			
66	1KT16EC424	Explain software design for RTS using software module.	5	CO9	L2
67	1KT16EC426	Explain attempt at mutual exclusion using condition flags.	5	CO9	L2
68	1KT14EC067	Explain transfer of controller parameters by using	5	CO9	L2
	TRITI-LECOT	semaphore.			

F. EXAM PREPARATION

1. University Model Question Paper

Cou	rse:	Real Time Systems						/ Year	May /	2018
Crs	Code:	15Ec743	Sem:	7	Marks:	100	Time:		180	
									minut	es
-	Note	Answer all FI\	/E full ques	tions. All qu	estions carry	equal mai	rks.	Mark	CO	Leve
								s		I
1	a								CO1	
	b									
	С								CO2	
	d									
				OR						
_	a							16 /	CO1	
								20		
	b								CO2	
	С									
	d									

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 31 / 33

		Title: Course Flair	i age. 5 i	, 55
pyrig	ht ©2017	. cAAS. All rights reserved.		
2	a		16 /	C03
_	а		20	003
			20	
	b			
	С			CO4
	d			
		OR		
-	a		16 /	CO3
			20	
	b			CO4
	c			
	d			
3	a		16 /	CO5
			20	
	b			
	С			CO6
	d			
_	a		16 /	CO5
	u		20	
	b		20	
	C			CO6
	d			200
	u			
			16.4	607
4	a		16 /	CO7
			20	
	b			
	С			C08
	d			
		OR		
-	a		16 /	CO7
			20	
	b			CO8
	c			
\neg	d			
5	a		16 /	CO9
			20	
	b			CO10
	C			

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 32 / 33

	OR			
a		16 /	CO9	
		20		
b				
С			C010	
d				

2. SEE Important Questions

Cou	rse:	Real Time S	ystems					Month	/ Year	May /	2018
Crs	Code:	15EC743 Sem: 7 Marks: 100 Time:					180				
										minut	es
	Note	Answer all F	IVE full que	stions. A	ll questions	carry (equal marks	5.	_	_	
Mo dul e	Qno.	Important C	Question						Mark s	CO	Year
1	1		ock diagram its operatio		mputer cont	rol sy	stem in an	industry	8	CO1	2018
	2	Give the capplications		of Rea	al Time Sys	tems	and give	suitable	6	CO1	2018
	3		lp of diagra		process in equential con					CO2	2018
	4	Define the time constra		constrai	nt"? How are	RTS	classified b	ased on	6	CO1	2017
	5	Discuss diff	erent types	of progra	ams in syste	m des	ign.		6	CO2	2017
2	1	1		-	Write the oxplain their				8	CO3	2018
	2	Explain DD0	C and its adv	antages	with neat di	agram			5	CO3	2018
	3	Describe th working pri	-	driven c	lata transfer	and	DMA data	transfer,	6	CO4	2018
	4	1	-		ncepts with Iisadvantage		SIMD, MI	MD and	10	CO3	2016
	5	Explain pro	cess related	interface	with suitab	le exa	mple.		10	CO4	2016
3		Explain, ho	-	ilation o	f programs	is car	ried out in	the real	5	CO5	2018
	2		e features the		al time lang ications.	guage	should po	ssess in	9	CO5	2018
	3	Write the di working.	agram of ta	ble drive	en applicatio	n syst	em and exp	olain the	6	CO6	2017

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	SKIT.Ph5b1.F02	Date: 16-08-2019
Title:	Course Plan	Page: 33 / 33

Copyrig	ght ©201	7. cAAS. All rights reserved.			
	4	List and explain various requirements in programming languages used in real time applications.	9	CO6	2017
	5	What is cutlass and what are the major requirements of CUTLASS?	6	CO5	2016
4	1	Write the block diagram of multitasking operating system and explain its functioning.	10	CO7	2018
	2	Discuss the task priority structures employed in the real time systems	10	C07	2018
	3	Explain different scheduling strategies.	6	C07	2018
	4	Explain the problem of shared memory. How semaphores are used to overcome this problem	10	CO8	2017
	5	Explain live-lock, deadlock and indefinite postponement in brief	6	CO8	2017
5	1	With neat flow chart, describe single program approach with reference to RTS design	10	CO9	2017
	2	Explain software design of RTS using software module	10	CO9	2017
	3	Write the typical planning phase and development phase diagrams of RTS design process and explain.		CO9	2018
	4	Discuss the i Yourdon methodology ii) Ward and Mellor methods of RTS developments.	14	CO10	2018
	5	Eplain functional specifications with respect to a drying oven	6	CO10	2018